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Independence of the Sample Mean and Variance 
for Normal Distributions:  A Proof by Induction

Masayuki Hirukawa

Abstract

It is well known that the sample mean and variance of a random sample drawn from a normal 
population independently follow normal and chi-squared distributions.  The proof for the independence 
usually relies on the condition for the independence of two quadratic forms or a linear and a quadratic 
form, the orthogonal transformation, or the concept of sufficiency.  This note gives a much more 
straightforward proof by induction without using such advanced subjects.
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1．Introduction

Let  = 1,...,  be a random sample drawn from a  distribution. It is well 
known that the sample mean

and variance
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have the following properties:

(a)  
(b)  
(c)   and  are independent.

Although (a) and (b) are shown straightforwardly by the transformations of normal 
random variables, statistics textbooks show (c) separately  by relying on the condition for 
the independence of two quadratic forms or a linear and a quadratic form (e.g. Theorem 
4.17 in Graybill, 1961; Theorem 2 of Chapter 12 in Hogg and Craig, 1970; and the first 
proof for Theorem 3.5.1 in Tong, 1990), the orthogonal transformation (e.g. Appendix 1.5 in 
Hoel,1962; the second proof for Theorem 3.5.1 in Tong, 1990; and Theorem 6 of Chapter 9 
in Roussas, 1997), or the concept of sufficiency (e.g. Application after Theorem 9 of Chapter 
11 in Roussas, 1997).　Instead, this note demonstrates (a)(b) and (c) together by induction. 
The proof is free of the aforementioned subjects, which are often beyond the scope of course 
work for introductory mathematical statistics.　The knowledge on moment generating 
functions or characteristic functions is not presumed, either.　It may appear that the proof 
requires alternative advanced subjects of differential and integral calculus including the 
Jacobian, the Gamma and Beta functions.　However, such subjects have been applied for 
the proof of (b) (the derivation of the probability density function (abbreviated as “p.d.f.” 
hereinafter) of  rather than (c), and thus they are not additional prerequisites.

2．The Proof

The proof starts with the case of = 2.　Observe that

Solving this system for  yields

and thus the Jacobian for the transformation from  to is

Then, the joint p.d.f. of    becomes
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where    is the Gamma function.　Therefore,  
, and  and  are independent.

Next, suppose that  and  and  are independent for some 
.　Consider the case of +1.　Since   are mutually independent, the 

joint p.d.f. of    is

Now derive the joint p.d.f. of  using (1).　Let = .　Then, straightfor-
ward calculations yield the transformation from    to    as

Solving this system for    gives

and thus the Jacobian for the transformation from    to    is

(1)

(2)

(3)
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Substituting (2) and (3) into (1) and rearranging it yield the joint p.d.f. of    as

To integrate out  from (4) to obtain the joint p.d.f. of  , consider

Let  .　Then, by

the integral becomes

Furthermore, let .  Then, by ,  and the definition of the 
Beta function, this integral reduces to

Then, by (4) and (5), the joint p.d.f. of    finally becomes

(4)

(5)
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Therefore,   ,  , and   and 
  are independent.　This completes the proof by induction. 
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